Latent Variable Models Under Misspecification: Two-Stage Least Squares (2SLS) and Maximum Likelihood (ML) Estimators

Author:

Bollen Kenneth A.1,Kirby James B.2,Curran Patrick J.3,Paxton Pamela M.4,Chen Feinian5

Affiliation:

1. The University of North Carolina at Chapel Hill,

2. Agency for Healthcare Research and Quality, Rockville, MD

3. The University of North Carolina at Chapel Hill

4. The Ohio State University, Columbus

5. North Carolina State University, Raleigh

Abstract

This article compares maximum likelihood (ML) estimation to three variants of two-stage least squares (2SLS) estimation in structural equation models. The authors use models that are both correctly and incorrectly specified. Simulated data are used to assess bias, efficiency, and accuracy of hypothesis tests. Generally, 2SLS with reduced sets of instrumental variables performs similarly to ML when models are correctly specified. Under correct specification, both estimators have little bias except at the smallest sample sizes and are approximately equally efficient. As predicted, when models are incorrectly specified, 2SLS generally performs better, with less bias and more accurate hypothesis tests. Unless a researcher has tremendous confidence in the correctness of his or her model, these results suggest that a 2SLS estimator should be considered.

Publisher

SAGE Publications

Subject

Sociology and Political Science,Social Sciences (miscellaneous)

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3