Adult Learners in a Novel Environment Use Prestige-Biased Social Learning

Author:

Atkisson Curtis1,O'Brien Michael J.1,Mesoudi Alex2

Affiliation:

1. Department of Anthropology, University of Missouri, Columbia, MO, USA

2. Department of Anthropology, Durham University, Durham, UK

Abstract

Social learning (learning from others) is evolutionarily adaptive under a wide range of conditions and is a long-standing area of interest across the social and biological sciences. One social-learning mechanism derived from cultural evolutionary theory is prestige bias, which allows a learner in a novel environment to quickly and inexpensively gather information as to the potentially best teachers, thus maximizing his or her chances of acquiring adaptive behavior. Learners provide deference to high-status individuals in order to ingratiate themselves with, and gain extended exposure to, that individual. We examined prestige-biased social transmission in a laboratory experiment in which participants designed arrowheads and attempted to maximize hunting success, measured in caloric return. Our main findings are that (1) participants preferentially learned from prestigious models (defined as those models at whom others spent longer times looking), and (2) prestige information and success-related information were used to the same degree, even though the former was less useful in this experiment than the latter. We also found that (3) participants were most likely to use social learning over individual (asocial) learning when they were performing poorly, in line with previous experiments, and (4) prestige information was not used more often following environmental shifts, contrary to predictions. These results support previous discussions of the key role that prestige-biased transmission plays in social learning.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,General Medicine,Social Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3