Implantation of Stimulation Electrodes in the Subretinal Space to Demonstrate Cortical Responses in Yucatan Minipig in the Course of Visual Prosthesis Development

Author:

Sachs H.G.1,Gekeler F.2,Schwahn H.2,Jakob W.3,Köhler M.4,Schulmeyer F.4,Marienhagen J.5,Brunner U.1,Framme C.1

Affiliation:

1. University Eye Clinic, Regensburg

2. University Eye Hospital Dept II, Neuro-Ophthalmology, Tübingen

3. University Anaesthesiology Clinic, Regensburg

4. University Neurosurgery Clinic, Regensburg

5. University Clinic for Nuclear Medicine, Regensburg - Germany

Abstract

Purpose During the course of the development of visual prostheses, subretinal stimulation films were implanted in micropigs in order to prove the feasibility of subretinal electrical stimulation with subsequent cortical response. One aim was to demonstrate that epidural recording of visual evoked potentials is possible in the micropig. Methods Film-bound stimulation electrode arrays were placed in the subretinal space of micropigs. This enabled the retina to be stimulated subretinally. Since conventional visual evoked potential (VEP) measuring is virtually impossible in the pig from the neurosurgical point of view, epidural recording electrode arrays were positioned over the visual cortex as permanent electrodes. Results The feasibility of temporary implantation of film-bound stimulation electrode arrays was successfully demonstrated in the micropig model. On stimulation with monopolar voltage pulses (1000 to 3000 mV), reproducible epidural VEP measurements (5 to 10 μV) were detected. Conclusions The feasibility of subretinal stimulation of the retina was demonstrated in a retinal model that is similar to the human retina. This animal model therefore offers a suitable means of studying the tolerability of stimulation situations in the course of visual prosthesis development.

Publisher

SAGE Publications

Subject

Ophthalmology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3