Mathematical method for analysis of the asymmetric retinal vascular networks

Author:

Zhu Zhipeng1,He Chao1,Zhang Yingli1,Yue Xiangji1,Ba Dechun1

Affiliation:

1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China

Abstract

Purpose: The purpose of this study was to quantitatively investigate the haemodynamics and oxygen transmission of the retina. Methods: Considering the effect of Fåhraeus-Lindqvist effect on the apparent viscosity of blood and the actual haematocrit in blood vessels, this study used the currently known retinal parameters (e.g. blood flow obtained by Doppler Fourier domain optical coherence tomography, FD-OCT for short) to construct a retinal blood circulation model consisting of an asymmetric vascular network system. Results: The blood flow velocity and the vascular diameter in the retinal blood vessels satisfied the exponential relationship. The wall shear stress was related to the release of nitric oxide synthase and endothelin-1 by endothelial cells and played an important role in retinal blood flow regulation. In the retinal arteries, the oxygen tension ranged from 98 to 65 mmHg, and the oxygen saturation ranged from 97.3% to 92.2%. In the retinal veins, the oxygen tension was approximately 41.8 mmHg, and the oxygen saturation ranged from 79.2% to 77.3%. The difference in oxygen content of the arteriovenous network was 5.4 (ml O2/dl blood), and the oxygen extraction of the superior temporal arteriovenous network was 86 (μl/min*ml O2/dl blood). Conclusion: Compared with previous relevant experimental data, the numerical model established in this article demonstrates reliability. It also helps advance our understanding of the retinal pathological processes related to hemodynamics and metabolism.

Publisher

SAGE Publications

Subject

Ophthalmology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linking Vascular Structure and Function: Image-Based Virtual Populations of the Retina;Investigative Ophthalmology & Visual Science;2024-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3