Artificial intelligence based detection of age-related macular degeneration using optical coherence tomography with unique image preprocessing

Author:

Celebi Ali Riza Cenk1ORCID,Bulut Erkan2,Sezer Aysun3

Affiliation:

1. Department of Ophthalmology, Acibadem University School of Medicine, Istanbul, Turkey

2. Department of Ophthalmology, Beylikduzu Public Hospital, Istanbul, Turkey

3. United’Informatique et d’Ingenierie des Systemes, ENSTA-ParisTech, Universite de Paris-Saclay, Villefranche Sur Mer, Provence-Alpes-Côte d’azur, France

Abstract

Purpose The aim of the study is to improve the accuracy of age related macular degeneration (AMD) disease in its earlier phases with proposed Capsule Network (CapsNet) architecture trained on speckle noise reduced spectral domain optical coherence tomography (SD-OCT) images based on an optimized Bayesian non-local mean (OBNLM) filter augmentation techniques. Methods A total of 726 local SD-OCT images were collected and labelled as 159 drusen, 145 dry AMD, 156 wet AMD and 266 normal. Region of interest (ROI) was identified. Speckle noise in SD-OCT images were reduced based on OBNLM filter. The processed images were fed to proposed CapsNet architecture to clasify SD-OCT images. Accuracy rates were calculated in both public and local dataset. Results Accuracy rate of local SD-OCT image dataset classification was achieved to a value of 96.39% after performing data augmentation and speckle noise reduction with OBNLM. The performance of proposed CapsNet was also evaluated on the public Kaggle dataset under the same processing procedures and the accuracy rate was calculated as 98.07%. The sensitivity and specificity rates were 96.72% and 99.98%, respectively. Conclusions The classification success of proposed CapsNet may be improved with robust pre-processing steps like; determination of ROI and denoised SD-OCT images based on OBNLM. These impactful image preprocessing steps yielded higher accuracy rates for determining different types of AMD including its precursor lesion on the both local and public dataset with proposed CapsNet architecture.

Publisher

SAGE Publications

Subject

Ophthalmology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3