VEGF gene polymorphisms regulate human retinal vascular endothelial cell proliferation and apoptosis through ASF/SF2-associated alternative splicing

Author:

Li Honghui1,Xie Jun1,Zeng Junwen2ORCID,Wu Juan2,Zhou Jin1ORCID,Zhao Wei3ORCID

Affiliation:

1. Chengdu Aier Eye Hospital, Chengdu, China

2. Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China

3. Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China

Abstract

This study investigated the effects of single nucleotide polymorphisms (SNPs) of the VEGF (vascular endothelial growth factor) gene, which are associated with susceptibility to age-related macular degeneration (AMD), on the expression of VEGF proteins (VEGF165 and VEGF165b) and their role in cell proliferation and apoptosis in human retinal vascular endothelial cells (hRVECs). Cell viability and VEGF165 and VEGF165b expressions were evaluated in hRVECs transfected with VEGF genes containing different SNPs (rs3025039, rs3025033, and rs10434). The Cell Counting Kit 8 assay, quantitative real-time PCR, western blotting, TUNEL assay, and enzyme-linked immunosorbent assay were used to examine the effects of VEGF gene SNPs on cell viability, VEGF165 and VEGF165b expressions, and cell apoptosis in hRVECs. The interaction and localization of the RNA-binding protein alternative splicing factor/splicing factor 2 (ASF/SF2) were assessed using RNA pull-down. Although VEGF165 expression decreased, VEGF165b levels increased significantly in hRVECs transfected with rs3025039, which decreased cell viability and induced apoptosis. The SNPs rs3025033 and rs10434 had no significant effects on VEGF165b protein production and apoptosis; however, they promoted cell proliferation. SNPs affected the interaction between RNA and ASF/SF2, a splicing factor for intron retention. Insulin-like growth factor-1 treatment induced the expression of VEGF165, but not VEGF165b, whereas SRPIN340 treatment, an inhibitor of ASF/SF2, increased VEGF165b protein levels. VEGF gene sequence variations affected hRVEC proliferation and apoptosis via alternative gene splicing. Thus, the regulation of splicing via ASF/SF2 could be a potential strategy in treating pathological neovascularization in patients with AMD.

Funder

Department of Science and Technology of Sichuan Province

Publisher

SAGE Publications

Subject

Ophthalmology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Correlational Image Modeling for Self-Supervised Visual Pre-Training;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

2. Masked Scene Contrast: A Scalable Framework for Unsupervised 3D Representation Learning;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

3. VEGFA Haplotype and VEGF-A and VEGF-R2 Protein Associations with Exudative Age-Related Macular Degeneration;Cells;2022-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3