A Solution for Absent Spatial Data: The Common Correlated Effects Estimator

Author:

Beenstock Michael1,Felsenstein Daniel2ORCID

Affiliation:

1. Department of Economics, Hebrew University of Jerusalem, Israel

2. Department of Geography, Hebrew University of Jerusalem, Israel

Abstract

Informed regional policy needs good regional data. As regional data series for key economic variables are generally absent whereas national-level time series data for the same variables are ubiquitous, we suggest an approach that leverages this advantage. We hypothesize the existence of a pervasive “common factor” represented by the national time series that affects regions differentially. We provide an empirical illustration in which national FDI is used in place of panel data for FDI, which are absent. The proposed methodology is tested empirically with respect to the determinants of regional demand for housing. We use a quasi-experimental approach to compare the results of a “common correlated effects” (CCE) estimator with a benchmark case when absent regional data are omitted. Using three common factors relating to national population, income and housing stock, we find mixed support for the common correlated effects hypothesis. We conclude by discussing how our experimental design may serve as a methodological prototype for further tests of CCE as a solution to the absent spatial data problem.

Publisher

SAGE Publications

Subject

General Social Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3