Inference for Income Mobility Measures in the Presence of Spatial Dependence

Author:

Kang Wei1ORCID,Rey Sergio J.1

Affiliation:

1. School of Public Policy, Center for Geospatial Sciences, University of California, Riverside, CA, USA

Abstract

Income mobility measures provide convenient and concise ways to reveal the dynamic nature of regional income distributions. Statistical inference about these measures is important especially when it comes to a comparison of two regional income systems. Although the analytical sampling distributions of relevant estimators and test statistics have been asymptotically derived, their properties in small sample settings and in the presence of contemporaneous spatial dependence within a regional income system are underexplored. We approach these issues via a series of Monte Carlo experiments that require the proposal of a novel data generating process capable of generating spatially dependent time series given a transition probability matrix and a specified level of spatial dependence. Results suggest that when sample size is small, the mobility estimator is biased while spatial dependence inflates its asymptotic variance, raising the Type I error rate for a one-sample test. For the two-sample test of the difference in mobility between two regional economic systems, the size tends to become increasingly upward biased with stronger spatial dependence in either income system, which indicates that conclusions about differences in mobility between two different regional systems need to be drawn with caution as the presence of spatial dependence can lead to false positives. In light of this, we suggest adjustments for the critical values of relevant test statistics.

Publisher

SAGE Publications

Subject

General Social Sciences,General Environmental Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3