Affiliation:
1. School of Mechano-Electronic Engineering, Xidian University, Xi’an, China
2. School of Construction Machinery, Chang’an University, Xi’an, China
3. China National Petroleum Corporation Yumen Oilfield Branch, Yumen, China
Abstract
Seven groups of different layering angles of Graphene oxide/Carbon fiber (GO-CF) hybrid reinforced shape memory composites are prepared by vacuum infiltration hot pressing system. The layering angles are respectively [0°]4, [±15°]s, [±30°]s, [±45°]s, [±60°]s, [±75°]s, and [90°]4. The shape fixation ratio, shape recovery ratio, and shape recovery driving force of GO-CF hybrid reinforced shape memory composites are investigated. The composite with the layering angle of [0°]4 has the minimum shape fixation ratio of 90.9%, the maximum shape recovery ratio of 97.6%, and the maximum recovery force of 2.83 N. Compared to [0°]4, the composite with the layering angle of [90°]4 has the 9.13% higher shape fixation ratio, but it has 16.1% lower shape recovery ratio and 59.4% lower recovery force. The microstructure of the composites is characterized and the microstructure of seven groups of composites is satisfactory. Therefore, the matrix within each group of composites has a similar effect on the shape memory properties of the composites. With the layering angle increased, the fiber resilience in the axial direction (X-direction) and the accumulated internal stress gradually decrease. With the layering angle increased, the shape fixation ratio and recovery time of GO-CF hybrid reinforced shape memory composites increase, while the shape recovery ratio, recovery force, and recovery rate decrease.
Funder
National Natural Science Foundation of China
Natural Science Basic Research Program of Shaanxi
Foundation of State Key Laboratory of Public Big Data
Key Research and Development and Science and Technology Support Program in Henan Province
Fundamental Research Funds for the Central Universities and Innovation Fund of Xidian University
Subject
Materials Chemistry,Organic Chemistry,Polymers and Plastics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献