Affiliation:
1. College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, China
2. Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi’an , China
Abstract
Covalent organic frameworks (COFs) possess extraordinary porosity, structural diversity, and good electrochemical performance, and have broad application prospects in the field of energy storage. However, the low conductivity of COFs limits its further development. In this paper, the electrochemical performance of triphenylamine-based COFs (TPA-COFs) was improved by compounding with highly conductive polyaniline (PANI) using solvothermal synthesis process. The highly conductive polyaniline fibers can act as conductive path in the composite to accelerate the charge transfer rate of TPA-COFs. The π-π interaction between TPA-COFs and PANI effectively decreases the agglomeration degree of PANI. The good dispersion of composite results in that the specific surface area of TPA-COFs/PANI-20 is high as 1233.9 m2 g−1, which provides rich diffusion channels for electrolyte ions. Moreover, the strong π-π structure in the composites ensures the stability of the material skeleton. Thus, TPA-COFs/PANI composite exhibits excellent rate characteristics and cycling stability.
Funder
National Natural Science Foundation of China
Shaanxi Province Technological Innovation Guidance Special
Subject
Materials Chemistry,Organic Chemistry,Polymers and Plastics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献