Synthesis, characterization and thermal degradation kinetics of azomethine-based halogen-free flame-retardant polyphosphonates

Author:

Vini R1,Thenmozhi S1,Murugavel SC1

Affiliation:

1. Chemistry Division, Polymer Research Laboratory, Department of Applied Science, PSG College of Technology, Coimbatore, Tamil Nadu, India

Abstract

In this study, azomethine polyphosphonates were synthesized by solution polycondensation of phenylphosphonic dichloride with various azomethine diols such as [4-(4-hydroxy phenyl) iminomethyl] phenol, [(4-(4-hydroxy-3-methoxy phenyl) iminomethyl)] phenol and [4-(4-hydroxy-3-ethoxy phenyl) iminomethyl] phenol using triethylamine catalyst at ambient temperature. The structure of the synthesized polymers was confirmed by Fourier transform infrared and 1H-, 13C- and 31P- nuclear magnetic resonance spectroscopic techniques. Thermal properties of the polymers were studied by thermogravimetric analysis (TGA) and differential scanning calorimetry under nitrogen atmosphere. The TGA data showed that the synthesized polyphosphonates produce high char yield at 600°C due to the presence of phosphorous atom in the polymer chain and hence have good flame-retardant properties. One of the synthesized polyphosphonate was blended with commercial diglycidyl ether of bisphenol-A (DGEBA) resin in various weight percentage and cured with commercial curing agent triethylene tetramine (TETA). The polyphosphonates-blended epoxy thermosets have tensile strength in the range of 5–41 MPa and the percentage of elongation at breaks was 4–18. It was found that the incorporation of polyphosphonates into epoxy thermoset decreased the tensile strength from 41 MPa to 5 MPa, whereas the elongation at break value increased with increase in the weight percentage of polyphosphonate. The influence of polyphosphonates on the flame retardancy of blended thermosets was examined by limiting oxygen index (LOI) and vertical burning (UL-94) tests and found that the polymer samples achieved an increased UL-94 rating and the LOI values were in the range of 24–26. Broido and Horowitz–Metzger methods have been used to study the thermal degradation kinetic parameters.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3