High fire-safety phosphorus-containing polyethylene terephthalate with well-balanced comprehensive performances by reactive blending with liquid crystalline copolyester

Author:

Yin Xue-Wu1,Xue Juan2,Wang Xiu-Li1ORCID,Wang Yu-Zhong1

Affiliation:

1. College of Biomass Science and Engineering, College of Chemistry, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MOE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China

2. Institute of Fundamental and Frontier Sciences (IFFS), University of Electronic Science and Technology of China (UESTC), Chengdu, China

Abstract

With increased public awareness of fire-safety, flame retardant materials have been widely used and developed. Among them, a polyester called CPET, synthesized by the copolymerization of polyethylene terephthalate and 2-carboxyethyl (phenyl) phosphinic acid, has a good fire-safety and has been employed in the manufacture of synthetic fibers. However, the fabricated fiber made of CPET simultaneously possessing good flame retardancy and mechanical properties is a dilemma. Herein, we resolve this problem through the reactive blending of CPET with a type of thermotropic liquid crystal copolyester (PPDT) and subsequently solid-state polymerization (SSP). Thus, the fire-safety of the CPET/PPDTSSP blend improves greatly. The peak heat release rate, total heat release, and total smoke release decrease by 31.2%, 16.3%, and 11.0%, respectively, compared with those of CPET. Meanwhile, the CPET/PPDTSSP shows better crystallization and mechanical properties than CPET. The strength at yield and Young’s modulus of CPET/PPDTSSP increase by 20.0% and 15.8%, respectively. This blend shows great potential in the fabrication of fire-safety fibers with high strength.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3