Friction and wear characteristics of synthetic diamond and graphene-filled polyether ether ketone composites

Author:

Kumar Vishal1,Kaliyamoorthy Rajkumar1ORCID

Affiliation:

1. Department of Mechanical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India

Abstract

Modifying tribo films using filler particles is a significant area of research in developing polymer-based tribo components to minimize material loss during the sliding process. This study focused on altering the wear characteristics of a polyetheretherketone (PEEK)/graphene high-performance polymer composite to strengthen the tribo film by adding synthetic diamond particles. The hot-pressed PEEK composite reinforced by graphene and diamond particles increased the hardness and thermal stability of the composite. Compared with pure PEEK, composites containing 1% graphene and 1% diamond particles showed an increment of 25% and 23% in hardness and thermal stability, respectively. Fourier-transform infrared spectroscopy and X-ray diffraction analysis verified the compatibility and intactness of the fillers in the PEEK matrix. The tribo properties of PEEK composites were characterized by a pin-on-disc tribometer on a counter steel surface. A PEEK composite containing 0.75 wt% graphene and 0.5 wt% diamond particles exhibited the lowest friction of 0.17 at a pressure of 1.5 MPa. The specific wear rate was low (1.78 × 10−6 mm3/Nm) for the composite containing 1 wt% graphene and 1 wt% diamond particles at a pressure of 1.5 MPa. Varying synthetic diamond and graphene filler concentrations in the PEEK matrix change the wear process by modifying the tribo film characteristics, revealing the lowest friction and wear rate. X-ray photoelectron and Raman spectroscopy show that the polymer film was transferred to the steel countersurface, and the tribo-chemical products of the tribo film contribute to a stable tribo film. The ferric oxide film and the tribo film improve the composite’s self-lubricating properties and load-bearing ability. Hence, the composite containing 0.75% of graphene and 0.5% of a synthetic diamond can be employed in the sliding bearing application of continuous conveyors used in mass production systems.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3