Nonlinear optical materials based on fluorinated polyurethane-imides and their application in waveguide devices

Author:

Wang Long-De12ORCID,Tong Ling1,Rong Jie-Wei1,Wu Jian-Wei1

Affiliation:

1. School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, China

2. Huainan Engineering Research Center for Fuel Cells and Anhui Key Laboratory of Low Temperature Co-Fired Materials, Huainan, China

Abstract

Two monomers, a second-order nonlinear optical azo chromophore C containing a tricyanofuran electron acceptor and a dihydroxyethyl nitrogen electron donor, and a bisphenol AF-type diether dianhydride (BPAFDA), were designed and synthesized. Fluorinated polyurethaneimide (PUI) electro-optic (EO) waveguide materials were prepared using the synthesized monomers polymerized with 4,4′-diphenylmethane diisocyanate (MDI). The structures of the synthesized chromophore C, BPAFDA, and polymers of PUI were characterized by 1HNMR and FTIR, and the thermal properties of the polymers were characterized by DSC and TGA. The prepared PUI exhibited good film-forming properties with glass transition temperatures (Tg) between 160–169°C and over 300°C at 5% thermal weight loss in a nitrogen atmosphere. The experimental results showed that the fluorinated PUIs possessed an EO coefficient of 56–60 p.m./V at 1550 nm and the optical propagation loss of the polymer waveguide was between 1.3–1.4 dB/cm at 1550 nm. Using PUI as the core material of the waveguides, EO modulators with Mach-Zehnder (MZ) structure were designed and prepared, showing good EO modulation performance at 1550 nm.

Funder

Natural Science Foundation of Education Department of Anhui Province

Natural Science Foundation of Anhui Provincial Department of Science and Technology

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3