Effect of dendrimer-functionalized magnetic iron oxide nanoparticles on improving thermal and mechanical properties of DGEBA/IPD epoxy networks

Author:

Jafari-Soghieh Fariba1,Maleki Behrooz2,Behniafar Hossein1

Affiliation:

1. Faculty of Chemistry, Damghan University, Damghan, Iran

2. Department of Chemistry, Hakim Sabzevari University, Sabzevar, Iran

Abstract

In this work, the effects of dendrimer-functionalized magnetic iron oxide nanoparticles (Fe3O4@D-NH2) on improving thermal and mechanical properties in epoxy networks (ENs) are investigated. Magnetic iron oxide nanoparticles are prepared by coprecipitation of iron (II) chloride tetrahydrate with iron (III) chloride hexahydrate. Poly(amido-amine) dendrimer is synthesized by Michael addition reaction from diethylenetriamine with methyl acrylate. The fabricated dendrimer has been used to stabilize and functionalize magnetic nanoparticles. Then, magnetic iron oxide nanoparticles are encapsulated within the dendrimer and subsequently loaded into diglycidyl ether of bisphenol A (DGEBA) epoxy resin in two different contents, that is, 5 and 10 wt%. The amine groups of dendrimer-functionalized magnetic iron oxide nanoparticles allow them to be covalently linked to the polymer matrix alongside the main amine hardener. The resulting epoxy/magnetic iron oxide nanocomposites are thoroughly characterized by X-ray diffraction analysis, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy. Probing the thermal behaviors of the epoxy/magnetic iron oxide nanocomposites by thermogravimetric analysis indicated that the temperature of 10% decomposition and the temperatures of the maximum decomposition rate values of Fe3O4@D-NH2@EN series increased up to 20 and 10°C, respectively. Dynamic mechanical thermal analysis also indicated that the organo-magnetic iron oxide nanoparticles can lead to an excellent interaction between the nanoparticles and the resulting DGEBA/isophorone diamine ENs.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3