Reinforcement of Poly(ethylene terephthalate) Fibers with Polyhedral Oligomeric Silsesquioxanes (POSS)

Author:

Zeng J.,Kumar S.1,Iyer S.,Schiraldi David A.2,Gonzalez R. I.3

Affiliation:

1. School of Polymer, Fiber & Textile Engineering, Georgia Institute of Technology, Atlanta GA 30332-0295, USA

2. Department of Macromolecular Science & Engineering, Case Western Reserve University, Cleveland OH 44106-7202, USA

3. Air Force Research Laboratory, Propulsion Directorate, Edwards AFB, CA 93524-7680, USA

Abstract

Poly(ethylene terephthalate) (PET)-based composite fibers were prepared by melt spinning three types of PET/polyhedral oligomeric silsesquioxane (POSS) composites. These composites were made by either melt blending POSS with PET at 5 wt% loading level (non-reactive POSS and silanol POSS) or by in-situ polymerization with 2.5 wt% reactive POSS. Significant increases in tensile modulus and tensile strengths were achieved in PET fibers with non-reactive POSS at room temperature. The hightemperature modulus retention was found to be much better for PET/silanol POSS fiber when compared to that of control PET. Although other PET/POSS nancomposite fibers tested did not show this high retention of modulus at elevated temperatures, PET/isooctylPOSS nanocomposite fibers did show increased modulus at elevated temperature compared to that of PET. Higher compressive strengths, compared to PET fibers, were observed for all three nanocomposite fibers. Gel permeation chromatography measurement suggested that there is no significant change in molecular weight during preparation of PET/POSS nanocomposites. SEM observations suggest that there is no obvious phase separation in any of the three PET/POSS systems. Crystallization behavior and thermal stability of the composite were also studied. The fiber spinning and mechanical performance with 10 and 20 wt% of trisilanolisooctyl POSS2 were also investigated1 the composites with higher concentrations of this nanofiller can be spun without any difficulty. At room temperature, the fiber tensile modulus increased steadily with the POSS concentration while fiber tensile strength showed no significant change. The elongation at break decreased significantly with increasing of POSS concentration. The high-temperature moduli of PET/POSS nanocomposite fibers were found to be rather variable, likely due to the modest compatibility between filler and polymers, which can lead to structural anisotropy within the composite.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3