Evaluation of augmented thermal, thermo-mechanical, mechanical properties of nano alumina reinforced TGDDM epoxy nanocomposites

Author:

Dhanapal Duraibabu1ORCID,Srinivasan AnandaKumar2,Rajarathinam Manjumeena3,Muthukaruppan Alagar2

Affiliation:

1. School of Marine Science and Technology, Zhejiang Ocean University, Zhousan, 316022, China.

2. Department of Chemistry, Anna University, Chennai, India

3. ITCA-TSC Technologies Pvt. Ltd, Bangalore 560008, karnataka India

Abstract

N,N-Tetraglycidyldiaminodiphenyl methane (TGDDM) was reinforced with various weight fractions (0.5, 1, and 1.5 wt%) of amine functionalized nano alumina (F-Al) were cured with diaminodiphenyl-methane (DDM). FT-IR analysis revealed that formation of functionalized nano alumina (F-Al) structure, was brought about via coupling agent APTES. Furthermore, the morphology of TGDDM epoxy nanocomposites was studied using X-ray Diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), microscopic analysis and an atomic force microscope (AFM). We found a bonding relationship between TGDDM epoxy and F-Al in TGDDM/F-Al nanocomposites It was interesting to note that the values of tensile, flexural and impact strength of 1 wt% F-Al reinforced TGDDM epoxy nanocomposites were found to be 141.5, 192.5 MPa, and 92.4 J/m2, respectively., which resulted in a substantial improvement in the dynamic mechanical analysis (DMA) to 4.3 and 5.5 for 0.5 and 1 wt% F-Al reinforced TGDDM epoxy nanocomposites and the glass transition temperature (Tg) increased from 210°C to 225°C as the F-Al content increased. The initial degradation temperature (IDT) of 0.5, 1, and 1.5 wt% F-Al reinforced TGDDM epoxy nanocomposites were significantly enriched to 328°C, 345°C, and 335°C respectively from 290°C of neat (TGDDM) epoxy matrix. Likewise, the char yield for the neat (TGDDM) epoxy matrix was 13% and that for 0.5, 1, and 1.5 wt% F-Al reinforced TGDDM epoxy nanocomposites were 17%, 25%, and 20% respectively. It is feasible to state unequivocally that considerable F-Al diffusion within the TGDDM epoxy can only occur at low weight percentages. The results clearly showed that F-Al reinforced TGDDM epoxy nanocomposites may be investigated for advanced high performance industrial engineering applications.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3