Synthesis and characterization of copolyimides containing fluorine and silicon surface-modifying agents

Author:

Connell John W1,Wohl Christopher J1,Crow Allison M2,Kim William T2,Shanahan Michelle H3,Doss Jereme R3,Lin Yi3

Affiliation:

1. NASA Langley Research Center, Hampton, VA, USA

2. NASA Langley Research Summer Scholars, NASA Langley Research Center, Hampton, VA, USA

3. National Institute of Aerospace, Hampton, VA, USA

Abstract

Understanding the effects that monomer chemistries have on material properties allows for fine tuning of polymer synthesis for current and future applications. In order to develop polymeric-based coatings that have minimal surface adhesion characteristics when exposed to a variety of contaminants, a more thorough understanding of fundamental structure–property relationships is needed. In the aeronautics field, one concept to improve fuel efficiency of future aircraft is to modify the wing design to enable laminar flow. There is a concern that contaminants such as insect residue and other debris will adhere to airflow surfaces and have sufficient height to disrupt laminar flow thereby increasing drag with concomitant loss of fuel efficiency. One potential solution would be a polymer surface or coating that prevents or minimizes adhesion of such contaminants. As part of a structure–property relationship study involving modification of surface properties, a series of copolyimides containing both fluorine and silicon surface-modifying agents (SMAs) were prepared and characterized. Based on knowledge of structure–property relationships with polyimides containing either type of SMA, it was hypothesized that the combination of two different SMAs may lead to unique surface properties as the two SMAs competed for surface area at the polymer–air interface. Copolyimides for this study were prepared through a multistep synthesis using an aromatic dianhydride with equimolar amounts of diamino functionalities comprised of an aromatic diamine along with two SMAs. Films were cast from copoly(amide acid) solutions that were subsequently thermally imidized under a nitrogen atmosphere. Polyimide films and coatings were characterized using differential scanning calorimetry, Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, contact angle goniometry, scanning electron microscopy, and energy-dispersive X-ray spectroscopy to determine chemical, thermal, and surface properties. Select samples were subject to high velocity insect impacts in a small-scale wind tunnel and the resulting residues were characterized for height and surface area and compared to those of a control surface.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3