Improved solubilization of multiwalled carbon nanotubes (MWCNTs) in water by surface functionalization with d-glucose and d-fructose

Author:

Mallakpour Shadpour123,Behranvand Vajiheh1

Affiliation:

1. Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, Islamic Republic of Iran

2. Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan, Islamic Republic of Iran

3. Center of Excellence in Sensors and Green Chemistry, Department of Chemistry, Isfahan University of Technology, Isfahan, Islamic Republic of Iran

Abstract

Carbon nanotubes (CNTs) are difficult to be dispersed into a polymer matrix. For effective reinforcement, the strong interfacial interaction between nanotubes and the matrix is essential to donate the efficient thermal transfer from the matrix to nanotubes. In this study, multiwalled carbon nanotubes (MWCNTs) were modified with glucose and fructose carbohydrates as biomolecules to obtain Gl-MWCNTs and Fr-MWCNTs. Good water solubilization of MWCNTs was obtained, and these hybrids were expected to be biocompatible. Functionalized MWCNTs were incorporated into a poly(amide–imide) (PAI) matrix-containing alanine through a simple ultrasonication-assisted solution blending procedure. Then, it was tried to compare the obtained nanocomposites morphologically and thermally to study the compatibility between PAI matrix with Gl-MWCNTs and Fr-MWCNTs. Surface morphology observations suggested strong interfacial adhesion between the functionalized MWCNTs and the PAI matrix. This leads to homogeneous distribution of nanotubes throughout the matrix. Significantly better thermal properties of PAI were achieved by introducing Gl-MWCNT into the PAI matrix than that was achieved by similar incorporation of Fr-MWCNTs.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3