The preparation and characterization of a heterocyclic meta-aramid fiber with outstanding thermal stability

Author:

Cao Kaikai12,Liu Yufeng1,Yang You1,Yuan Feng1,Wang Jin1,Liu Hanmao1,Jiang Mengjin2,Yang Jun1ORCID

Affiliation:

1. Zhuzhou Times New Material Technology Co., LTD, Zhuzhou, China

2. State Key Laboratory of Polymer Material Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China

Abstract

A heterocyclic meta-aramid fiber containing benzimidazole structure was prepared by the low-temperature polycondensation of m-phenylenediamine, 2-(4-aminophenyl)-5-benzimidazole, and isophthaloyl dichloride, followed by dry-jet wet spinning. The structure and properties of the heterocyclic modified meta-aramid (h-aramid for short) were explored and compared with poly(isophthaloylmetaphenylene diamine) (m-aramid for short). H-aramid exhibits excellent spinnability. The surface of the fiber is smooth and even, with a partially ordered structure. Mechanical properties, thermal resistance, and flame retardant of h-aramid are significantly enhanced as the introduction of benzimidazole can not only increase the rigidity of molecular chains but also strengthen hydrogen bonds and act as physical crosslinking points. The strength and modulus of h-aramid are up to 0.84 GPa and 16.66 GPa, respectively, with an elongation at break of 20%. The glass transition temperature and melting temperature of h-aramid reach 302°C and 356°C, respectively, about 30°C and 40°C higher than that of m-aramid. Temperature of 10 wt% weight loss under nitrogen and air atmosphere is 17°C and 39°C higher than those of m-aramid. Besides, the thermal degradation behavior of h-aramid was studied, and its degradation process and mechanism was proposed.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3