SiBCN ceramic precursor modified phthalonitrile resin with high thermal resistance

Author:

Wang Zi-long1,Han Yue2,Liu Xian-yuan13,Guo Ying1,Zhou Heng1ORCID,Wang Jun3,Liu Wen-bin3ORCID,Li Ye1,Weijian Han1,Zhao Tong12ORCID

Affiliation:

1. Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China

2. South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, People’s Republic of China

3. Institute of Composite Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, People’s Republic of China

Abstract

In order to expand the application of phenolic-type phthalonitrile resin in high-temperature fields, a series of organic–inorganic hybrid materials have been prepared via conventional blending and doping method. The chemical transformations were monitored by various measurements, while the curing behavior was evaluated by differential scanning calorimetry (DSC), and these new blends could be also cured under auto-catalytic process. The onset polymerization exothermic temperature shifted to lower temperatures (195.3°C). Later, the compatibility within the cured products was analyzed by using energy dispersive spectrometer (EDS) and scanning electron microscope (SEM), where no phase separation occurred between the ceramic domain and the phthalonitrile polymer. Upon curing, the thermal properties of the polymers were characterized by dynamic thermomechanical analysis (DMA) and thermogravimetric analysis (TGA), where enhanced heat resistance and thermal stability were discovered, The blends residual weight (Cy) value was 57.6% with 15 wt.% SiBCN at 1000°C. And when blended with SiBCN precursor, no peak or onset point could be observed in the temperature range (50 to 500°C), which indicated the glass transition temperature greater than 500°C. Additionally, the dielectric properties were evaluated. And when the content was 5 wt.%, the blends dielectric loss was 0.0043 and the permittivity was 4.31. The above results indicated that the introduction of ceramic precursors could enhance the thermal performance of phthalonitrile polymers, consequently the hybrid materials shown great potential in the application of higher temperature fields.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3