New strategy for the development of lightweight ballistic armors with limited backface signature

Author:

Berrouane Abdelwahed1,Derradji Mehdi1ORCID,Khiari Karim1,Amri Bouchra1,Mehelli Oussama1,Abdous Slimane1,Zegaoui Abdeljalil1,Ramdani Noureddine1,Belgacemi Raouf1,Liu Wenbin2ORCID

Affiliation:

1. UER Procédés Energétiques, Ecole Militaire Polytechnique, Algeria

2. Institute of Composite Materials, Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, China

Abstract

In this study, a new strategy is adopted for the development of advanced, and lightweight ballistic armor. This new generation of ballistic protections is referred to as “hybrid”, in which certain layers of Kevlar have been impregnated with a high-performance green and bisphenol-A free thermosetting resin, namely the vanillin-based benzoxazine (Va-BZ). The role of thermosetting polymer is to slow down and stop the projectile. In addition, the backface signature (BFS) with a minimum number of Kevlar layers is reduced. Indeed, this kind of matrix not only possesses one of the highest crosslinking densities in the field, but also offers excellent mechanical and thermal properties. The adopted experimental approach consists in gradually changing, in increments of 5, the number of impregnated Kevlar layers. The ultimate goal is to reduce the number of Kevlar layers from 26 (currently in use) to 20 while ensuring a BFS of less than 44 mm (as per the requirement of the National Institute of Justice standard NIJ-0101.06). Indeed, the adopted strategy allowed significant reduction in the BFS. For instance, armors made of 20 layers of Kevlar layers in which 10 layers were impregnated by the Va-BZ displayed the minimal BFS value of 36.54 mm. Hence, by introducing the Va-BZ resin, the non-perforated Kevlar fabrics gained enough rigidity to sustain the impact with minimal deformation. Overall, these newly developed armors offer the best BFS possible to protect vital human body parts.

Funder

Algerian Ministry of National Defense

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3