A transparent and intumescent phosphaphenanthrene/phenylpyrazole-containing epoxy resin system and its flame retardancy

Author:

Luo Zijin12ORCID,Chen Zhe3,Wei Jun1,Wang Dongchao1,Chen Han2,Chen Rui12ORCID

Affiliation:

1. Wuhan Institute of Technology, Wuhan, China

2. West Anhui University, Luan, China

3. Chizhou University, Chizhou, China

Abstract

A novel intumescent flame retardant, PPMD, was designed from phosphaphenanthrene and nitrogen heterocycles through the two-step gut reactions of 1,4-phthalaldehyde and 3-methyl-1-phe-nylpyrazol-5-ylamine. After determination of its structure by nuclear magnetic resonance and Fourier-transform infrared analyses, PPMD was added to an epoxy resin (EP) to facilitate a curing process. Thus, EP/PPMD samples with excellent transparency and flame retardancy were acquired. For example, the EP sample satisfied the UL-94 V-0 standard and achieved a limiting oxygen index value of 30.5% because of the incorporation of 5 wt% PPMD. The cone calorimeter test of the EP/5% PPMD sample revealed that its total smoke production (TSP) and total heat release (THR) values of EP/5% PPMD was only 22.5% and 56.4% of the control group, respectively. Moreover, the average effective heat of combustion (av-EHC) value of EP/5% PPMD was reduced by 34.1%, indicating that PPMD possessed high flame-inhibition activity and smoke suppression efficiency. The flame-retardant mechanisms of PPMD were also investigated in gas phase by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and in condensed phase by XPS and IR.

Funder

Hubei provincial science and technology department

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Neural Rendering for Large-Scale Scenes with Motion Blur;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

2. DynIBaR: Neural Dynamic Image-Based Rendering;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

3. NeRF-Loc: Visual Localization with Conditional Neural Radiance Field;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

4. NeRF-Editing: Geometry Editing of Neural Radiance Fields;2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3