Affiliation:
1. CNOOC Tianjin Chemical Research and Design Institute, Tianjin, China
Abstract
Membranes with both good permeation and selectivity are highly desired for gas separations. In this study, we synthesized a new 6FDA-type polyimide copolymer 6FDA-BDTA-ODA, and then an organic polymer of poly ( N-vinylimidazole) was doped into the polyimide to prepare mixed matrix membranes (MMMs). We also studied the effect of poly ( N-vinylimidazole) contents on the separation performance of MMMs. The results showed that the ideal selectivity for CO2/CH4 was improved by adding the poly ( N-vinylimidazole) filler. The ideal selectivity reached 63.5 with 6 wt% poly ( N-vinylimidazole) loading with the permeability of 29.2 Barrer. The highly permeable MMMs showed a considerably enhanced performance for CO2/CH4 that close to the 2008 Robeson upper-bound. The gas separation performance of the prepared MMMs for CO2/CH4 was improved compared to that of the pure polymer membrane, indicating that the copolyimide/poly ( N-vinylimidazole) MMMs have promising applications in CO2/CH4 gas separation.
Funder
Scientific and Technological Projects of CNOOC
Scientific and Technological projects of CNOOC Energy Development Co., Ltd.
Subject
Materials Chemistry,Organic Chemistry,Polymers and Plastics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献