Design of low dielectric constant polybenzoxazine nanocomposite using mesoporous mullite

Author:

Ilango K1,Prabunathan P12,Satheeshkumar E1,Manohar P1

Affiliation:

1. Department of Ceramic Technology, A.C. Tech, Anna University, Chennai, Tamilnadu, India

2. Department of Chemistry, Indian Institute of Handloom Technology, Salem, Tamilnadu, India

Abstract

In this present work, porous mullites (PM0–5) were synthesized through a template-assisted method using various weight percentages of pluronic (P-123). PM5 obtained using 10 wt% of P-123 was found to show maximum porosity (3.8 Å) and low dielectric constant value (2.4). PM5 was functionalized using glycidyl-terminated silane and denoted as FPM and various weight percentages of FPM were reinforced with polybenzoxazine (PBZ) matrix in order to develop FPM/PBZ nanocomposites. The thermal studies indicate that 1.5 wt% of FPM/PBZ nanocomposite showed improved thermal stability with 34% char yield at 800°C and 162°C as glass transition temperature. It also exhibits low dielectric constant (2.6) than that of the neat PBZ matrix and other FPM/PBZ nanocomposites. The microscopic analysis confirms the homogenous dispersion of FPM into the PBZ polymer that has a porous morphology. The results suggest that the as-synthesized mesoporous mullite with low dielectric constant ( k), synthesized via template-assisted method can be used as a reinforcement to decrease the dielectric constant of polymeric material, which is of industrial significance.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3