Novel amino-containing fluorene-based bisphthalonitrile compounds with flexible group

Author:

Wang An-ran1,Dayo Abdul Qadeer1,Lv Dan1,Xu Yi-le1,Wang Jun1,Liu Wen-bin1,Derradji Mehdi12

Affiliation:

1. Institute of Composite Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, People’s Republic of China

2. UER Chimie Appliquée, Ecole Militaire Polytechnique, Bordj El-Bahri, Algiers, Algeria

Abstract

A series of amino-containing fluorene-based bisphthalonitrile (AFPN) monomers with alkyl or alkoxy groups were successfully produced by the reaction of 4-nitrophthalonitrile with 9, 9-bis (3-alkyl (or alkoxy)-4-aminophenyl)-2, 7-dihydroxylfluorene in the presence of potassium carbonate by a nucleophilic substitution reaction. The chemical structures of the synthesized monomers were confirmed by the Fourier transform infrared (FTIR), proton nuclear magnetic resonance, and carbon-13 nuclear magnetic resonance analyses. The synthesized monomers’ curing behaviors were evaluated by FTIR and differential scanning calorimetry, and a rheological analysis was performed to evaluate their respective processabilities. Moreover, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) were performed for the thermomechanical, thermal, and thermo-oxidative analyses of the polymers. The results confirmed that the newly prepared phthalonitrile (PN) monomers with alkyl or alkoxy groups exhibited a self-promoted curing behavior. The rheological analysis suggested that the processing windows of the synthesized monomers were wider than that of APFN monomer bearing no flexible group. DMA and TGA revealed that the cured polymers exhibited high glass transition temperature (358–416°C) and the char yields at 800°C under nitrogen were between 70% and 77%. Moreover, the introduction of alkyl or alkoxy groups into the PN monomers’ backbones slightly reduced the thermal stability of the resulting polymers.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3