Electromagnetic interference shielding effectiveness of polypyrrole-silver nanocomposite films on silane-modified flexible sheet

Author:

Benzaoui Karim1,Ales Achour1,Mekki Ahmed2ORCID,Zaoui Abdelhalim1,Bouaouina Boudjemaa3,Singh Ajay4,Mehelli Oussama5ORCID,Derradji Mehdi5ORCID

Affiliation:

1. Laboratoire CEM, Electrotechnique, Ecole Militaire Polytechnique, Algiers, Algeria

2. Laboratoire de Chimie Macromoléculaire, Physico-Chimie des Matériaux, Ecole Militaire Polytechnique, Algiers, Algeria

3. Département de Physique, Université M’hamed Bougara de Boumerdès, Algeria

4. Technical Physics Division, Bhabha Atomic Research Centre (BARC), Mumbai, India

5. Laboratoire de Génie des Procédés, Ecole Militaire Polytechnique, Algiers, Algeria

Abstract

The conventional electromagnetic interference (EMI) shielding materials are being gradually replaced by a new generation of supported conducting polymer composites (CPC) films due to their many advantages. This work presents a contribution on the effects of silane surface–modified flexible polypyrrole-silver nanocomposite films on the electromagnetic interference shielding effectiveness (EMI-SE). Thus, the UV-polymerization was used to in-situ deposit the PPy-Ag on the biaxial oriented polyethylene terephthalate (BOPET) flexible substrates whose surfaces were treated by 3-aminopropyltrimethoxysilane (APTMS). X-ray Photoelectron Spectroscopy (XPS) analyzes confirmed the APTMS grafting procedure. Structural, morphological, thermal, and electrical characteristics of the prepared films were correlated to the effect of substrate surface treatment. Thereafter, EMI-SE measurements of the elaborated films were carried out as per ASTM D4935 standard for a wide frequency band extending from 50 MHz to 18 GHz. The obtained results confirmed that the APTMS-treated BOPET film exhibit higher EMI shielding performance and better electrical characteristics compared to the untreated film. In fact, a 32% enhancement of EMI-SE was noted for the treated films compared to the untreated ones. Overall, these results put forward the role played by the surface treatment in strengthening the position of flexible PPy-Ag supported films as high-performance materials in electronic devices and electromagnetic interference shielding applications.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3