Affiliation:
1. College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
2. College of Material Science and Engineering, Jiamusi University, Jiamusi, China
Abstract
In this article, an ultrafiltration membrane was fabricated from phenolphthalein polyethersulfone (PES-C) modified with emodin using a phase-inversion method. ATR-FTIR and UV-vis analysis showed that emodin had good compatibility with the PES-C ultrafiltration membrane. SEM showed that the prepared ultrafiltration membranes consisted of a porous skin layer and a macroporous support sublayer. The contact angle value of the pure PES-C ultrafiltration membrane was 77.71° and that of the PES-C ultrafiltration membrane blended with 0.105 wt.% emodin decreased to 65.71°, which explained the fact why its pure water flux significantly increased from 190 L/m2·h to 387 L/m2·h. The antifouling properties of the obtained ultrafiltration membranes were assessed by static protein adsorption, bacterial adhesion, antibacterial tests, and filtration experiments with BSA. The PES-C (13.895 wt.%)/emodin (0.105 wt.%) ultrafiltration membrane presented the lowest protein adsorption rate (1.44%), the highest flux recovery ratio (57%), and the largest inhibition zone diameter (3.0 ± 0.06 mm). Compared with that of the pure PES-C ultrafiltration membrane, the bacterial adhesion effect of the PES-C/emodin (0.105 wt.%) ultrafiltration membrane was significantly reduced. In addition, PES-C incorporated into the emodin ultrafiltration membrane had excellent stability in a deionized water system.
Funder
National Natural Science Foundation of China
Science and Technology Innovation Team Construction Project of Provincial Education Department
Subject
Materials Chemistry,Organic Chemistry,Polymers and Plastics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献