Structure and properties of thermoplastic polyimide based on 4′,4′—(oxybis (methylene)) bis ([1.1′- bipheny]3-amine) diamine

Author:

Lu Jinshui1,Zhang Jinyuan1,Liu Heng1,Chen Weipeng1,Luo Jiangrong1,Wang Ziqing1,Cui Tingting1,Min Yonggang1ORCID,Liu Yidong2

Affiliation:

1. School of Materials and Energy, Guangdong University of Technology, Guangzhou, China

2. Institute of Mechanics, Chinese Academy of Sciences, Beijing, China

Abstract

In this work, a new diamine was designed by connecting flexible structures such as ether bond and aliphatic carbon chain between benzene rings, and was synthesized and purified through simple reactions such as Suzuki reaction. Finally, a series of polyimide (PI) films were synthesized by copolymerization with 4.4`-diaminodiphenyl ether (ODA)\pyromellitic dianhydride (PMDA) in different proportions. We prepared polyimide films with new monomer copolymerization ratios of 1% (PI-1), 5% (PI-2), 10% (PI-3), and 20% (PI-4). The polyimide films showed excellent glass transition temperatures, which were attributed to their unique bent architectures. The mechanical and thermal properties of the thermosets were studied using tensile testing, static thermomechanical analysis (TMA), and thermogravimetric analysis (TGA). As the results, the films exhibited the optimal glass transition temperatures (317.56°C–381.91°C), and the component with the highest copolymerization ratio has a 15% decrease in glass transition temperature compared to the component without copolymerization. Moreover, PI-1-PI-4 showed good heat resistance in the N2 atmosphere. The temperatures corresponding to a 5% heat loss in the films (T5%) were 458.12 °C–548.75°C, respectively.

Funder

National Key R&D Program of China

Guangdong Innovative and Entrepreneurial Research Team Program

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3