Effects of UV irradiation and condensation on poly(ether-ether-ketone)/carbon fiber composites from nano- to macro-scale

Author:

Niu Yi-Fan1,Yang Ying1,Li Tian-Yi1,Yao Jia-Wei1

Affiliation:

1. Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin, China

Abstract

Durability and damage mechanism of carbon fiber–reinforced poly(ether-ether-ketone) composites (T300/PEEK) have been investigated under ultraviolet (UV) and water condensation conditions for 1560 h. The tensile modulus decreased by 5.4% after 1560 h of exposure, while no significant changes were found in tensile strength. The microhardness and elastic modulus of the resin measured by atomic force microscope–based nanoindentation were found to be dramatically increased after 240 h treatment and then decreased after longer treatment. The thermal decomposition temperature decreased from 549° to 522° after 840 h of exposure due to the formation of side chains and low molecular products induced by UV. The damage of resin was attributed to chain scission and recombined cross-linking by UV irradiation and hydrolytic deterioration by hydrothermal conditioning, where the decomposition led to the formation of carbonyl groups and hydroxyl groups, as well as the reduction of ether groups determined by Fourier transform infrared spectroscope. Scanning electron microscopy analysis on tensile fractures near the exposed surface indicated fiber/matrix debonding. The resin on the surface degraded rapidly, and its roughness increased continuously from 30.8 ± 4.1 nm to 88.8 ± 6.8 nm after 840 h of degradation, with the formation of microholes and microcracks. A degradation mechanism was proposed, and the accelerated weather aging affected only the surface region of T300/PEEK.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3