Affiliation:
1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
Abstract
A series of co-polyimide (co-PI) resins with distorted noncoplanar structure were carefully designed and successfully fabricated by copolycondensation of 2,3,3′,4′-biphenyltetracarboxylic dianhydride, 4,4′-oxydianiline (ODA), and 4,4′-(1,3-phenylenedioxy)dianiline (TPER). As-introduced asymmetric structure endowed these co-PI resins with excellent solubility and relatively low melt viscosity. Molecular simulation and dielectric analysis confirmed that the distorted noncoplanar structure induced a large amount of free volume. The minimum melt viscosity of co-PI resins decreased with increasing TPER content and reached 520 Pa·s at 400°C, indicative of good processability. Besides, the co-PI resins displayed outstanding thermal performance with glass transition temperature ranging from 256°C to 330°C and 5% weight loss temperature higher than 550°C in nitrogen atmosphere. Moreover, the co-PI sheets prepared by compression molding possessed tensile strength of 79.5–91.7 MPa and bending strength of 71.0–81.2 MPa when tuning the TPER/ODA ratio, with lower strengths observed at higher TPER content.
Funder
Fundamental Research Funds for the Central Universities
Subject
Materials Chemistry,Organic Chemistry,Polymers and Plastics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献