Thermoset polyimide matrix resins with improved toughness and high Tg for high temperature carbon fiber composites

Author:

Qu Ximing1,Ji Mian1,Fan Lin1,Yang Shiyong1

Affiliation:

1. Laboratory of Advanced Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China

Abstract

Thermoset polyimide matrix resins with high melt processability for high-temperature carbon fiber composites were prepared from the diethyl ester of 3,3′,4,4′-benzophenonetetracarboxylic acid (BTDE) and the aromatic diamine mixtures consisting of 4,4′-bis(4-amino-2-trifluoromethylphenoxy)biphenyl (6FBAB) and p-phenylenediamine ( p-PDA) with the monoethyl ester of 5-norbornene-2,3-dicarboxylic acid (NE) as the molecular-weight-controlling and reactive endcapping agent. The effects of diamine mixture compositions on the melt processability of the B-staged oligoimides and the thermal and mechanical properties of the thermally cured polyimide resins were systematically investigated. Experimental results indicated that the polyimide matrix resins with p-PDA concentration of ≤ 40% in 6FBAB + p-PDA showed lower melt viscosities, corresponding to a higher melt processability, than the conventional thermoset polyimide (PMR-15). After thermal curing, the thermoset polyimides exhibited a very good combination of thermal and mechanical properties with the glass transition temperature (Tg) of as high as 353 °C determined by differential scanning calorimetry and impact strength of 15.2 kJ m−2. Carbon fiber-reinforced composite derived from the representative polyimide resin showed good mechanical properties at temperatures of as high as 288 °C.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3