Optimizing the structural properties of electrospun polyimide membranes by response surface method

Author:

Parsaei Solmaz1,Zebarjad Seyed Mojtaba1ORCID,Moghim Mohammad Hadi2

Affiliation:

1. Department of Materials Science and Engineering, Engineering School, Shiraz University, Shiraz, Iran

2. Department of Energy Storage, Institute of Mechanics, Shiraz, Iran

Abstract

Recently, there has been a rising tendency for the fabrication of membranes using the electrospinning method because it can control the properties of the fibrous mats by changing the parameters of the process. For this reason, in the current research, polyimide (PI) membranes were fabricated by the electrospinning method. The effect of electrospinning parameters on the content of porosity and tensile properties of the electrospun PI mats were investigated. Solution concentration, device voltage, and feed rate were considered the process parameters. Response surface methodology was adopted to design the electrospinning experiments. The results showed that the feed rate had the most contribution to the content of porosity of electrospun PI membranes which increased by decreasing the feed rate. On the other hand, the polymer concentration had a remarkable effect on the tensile strength. Indeed, the tensile strength improved as the solution concentration increased. The optimized electrospinning parameters to achieve both the highest porosity (97.66%) and the highest tensile strength (2.25 MPa) in the PI membrane were as follows: solution concentration 16.78%wt, device voltage 17 kV, and feed rate 1.4 mL h−1. The experimental results were in good agreement with the predicted values.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3