Conjugated donor–acceptor copolymers derived from phenylenevinylene and trisubstituted pyridine units

Author:

Hariharan A.1,Subramanian K.1,Alagar M.2,Dinakaran K.3

Affiliation:

1. Department of Chemistry, Anna University, Chennai, Tamil Nadu, India

2. Department of Chemical Engineering, Anna University, Chennai, Tamil Nadu, India

3. Department of Chemistry, Thiruvalluvar University, Vellore, Tamil Nadu, India

Abstract

Copolymers having intramolecular donor–acceptor systems encompassing trisubstituted pyridine derivatives as acceptor and phenylenevinylene (PPV) unit as a donor segment were synthesized. In addition, thiophene-containing random terpolymer PPVPYT via palladium-catalyzing Heck coupling reaction is reported. The novel-substituted pyridine monomers (PYBr) are synthesized by adopting a one-pot synthesis method using p-toluenesulfonic acid as catalyst in ethanol medium, which results in an excellent yield of about 95%. All the copolymers Poly phenylenevinylene-co-Pyridine derivatives (PPVPY) and terpolymers of Polyphenylenevinylene-co-Pyridine and Thiophene (PPVPYT) are found to be soluble in organic solvents, such as tetrahydrofuran, chloroform, and N, N-dimethylformamide. The molecular weights of the synthesized polymers were characterized by gel permeation chromatography (GPC), and their chemical structures were confirmed by infra red and nuclear magnetic resonance spectroscopies. The electrochemical band gaps of PPVPY-1, PPVPY-2, and PPVPY-3 copolymers are estimated to be 2.55, 2.48, and 2.0, respectively. Similarly, the band gap of PPVPY75T25, PPVPY50T50, and PPVPY25T75 random copolymers are estimated as 2.31, 1.95, and 2.23, respectively. These polymers also show excellent optical and thermal properties.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3