Acid–base core–shell microspheres are incorporated into proton exchange membranes to effectively alleviate the rapid decline in proton conductivity at low humidity

Author:

Sun Xiang1ORCID,Zhu Fan1,Liu Xiaoyang1,Ren Hongqian1,Xia Minglong1,Yang Mengjie1,Feng Yi1,Ding Huili1

Affiliation:

1. Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, People’s Republic of China

Abstract

The development of a proton exchange membrane (PEM) that can avoid rapid decay of proton conductivity under low humidity is of great significance for the practical application of PEMFC. In this study, acid–base core–shell microspheres (PCSMs-MA@TAC) with a carboxylic acid core and a triazine shell were synthesized by distillation-precipitation polymerization using cross-linked carboxylic acid microspheres (PMAA) as seeds. These PCSMs were then incorporated into a sulfonated poly(ether ether ketone) matrix to make hybrid membranes. Incorporation of PCSMs microspheres can not only strengthen the vehicle mechanism by increasing the water uptake of the membrane, but also the acid–base pairs formed at the SPEEK/PCSMs interface provide a new low-energy barrier pathway for proton hopping, thereby enhancing the proton conduction of the Grotthuss mechanism. The results show that when the content is 10 wt%, the proton conductivity of the SPEEK/PCSMs-MA@TAC composite membrane can reach 0.161 S cm−1 at 80°C and 100% RH, which is 19.3% higher than the SPEEK control membrane (0.135 S cm−1). In particular, even at 60% RH, the proton conductivity of the SPEEK/PCSMs-MA@TAC-10 composite membrane is still 67 mS cm−1, which is 3.16 times higher than that of the SPEEK membrane. Therefore, the SPEEK/PCSMs-MA@TAC composite membrane can maintain superior performance even under high temperature and low humidity conditions.

Funder

Department of Education of Hebei Province

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3