Tribological and thermal characteristics of an epoxy-based composite containing polyaryletherketone

Author:

Hu Haixia12ORCID,Shu Rui12,Meng Limin12,Yu Tiansheng12,Wang Chengjun23,Chen Dingming12,Shen Yuzhe23

Affiliation:

1. College of Mechanical Engineering, Anhui University of Science and Technology, Huainan, China

2. Anhui Key Laboratory of Mine Intelligent Equipment and Technology, Anhui University of Science and Technology, Huainan, China

3. College of Artificial Intelligence, Anhui University of Science and Technology, Huainan, China

Abstract

Current research work focuses on the tribological and thermal properties of epoxy resin matrix composites, which were modified by polyaryletherketone (PAEK-C). The results of the infrared spectra and morphologies of fracture surfaces experiments corroborate the successful synthesis of the materials. From the tribological experiments, it can be known that when the mass fraction of PAEK-C was 10 phr., the corresponding composite exhibited the outstanding wear performances, which could be ascribed to the higher H/E ratio. Based on the results of tribological experiments, it could be obtained that the main wear mechanism is governed by combination of the plastic deformation, creation of vertical cracks in the sliding track, separation of debris, and material waves due to adhesions. In addition, the glass transition temperatures ( Tg) and heat-resistance index ( THRI) of the PAEK-C/epoxy resin higher than those of pure epoxy resin matrix, respectively. Furthermore, when the mass fraction of PAEK-C increased, the heat resistance index ( THRI) of the corresponding composite is 196.3°C, which is higher than that of neat epoxy resin (180.9°C). Also, according to the results of thermogravimetric analysis experiments, it could conclude that the activation energy of the curing process is situated in the range of 150–160 kJ mol−1 depending on the mass fraction of epoxy resins.

Funder

Key Program of the Education Department of Anhui Province

the Key Program of the Education Department of Anhui Province

Key research and development Program of Anhui Province

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3