MWCNT-reinforced polyarylene ether nitrile nanocomposites

Author:

Wei Renbo1,Jin Fei1,Long Cheng1,Liu Xiaobo1

Affiliation:

1. Research Branch of Advanced Functional Materials, School of Microelectronics and Solid-State Electronics, High Temperature Resistant Polymer and Composites Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China

Abstract

In this study, we investigated the effect of surface roughness of acidulated multi-walled carbon nanotube (MWCNT) on the physical performances of MWCNT/polyarylene ether nitrile (MWCNT/PEN) nanocomposites. Acidulated MWCNTs with different surface roughnesses were prepared by ultrasonicating and refluxing of MWCNTs in the mixture solvent of sulfuric acid/nitric acid and characterized by atomic force microscopy. With longer acidulating time, more and more oxygen functional groups including carboxyl and hydroxyl groups which result in the coarser surface of the obtained MWCNT, were generated. MWCNT/PEN composites were fabricated by using the solution-casting method with the acidulated MWCNTs and PEN. SEM observation showed that the acidulated MWCNTs are well-embedded in the polymer matrix without aggregation. differential scanning calorimetry and thermogravimetric analysis results showed that the incorporation of acidulated MWCNTs can improve the thermal behavior of the resulted polymer composites. The coarser the surface of the acidulated MWCNT, the better the mechanical performances of the obtained composites, while opposite results were observed for the dielectric properties of the nanocomposites. The dynamical rheological results showed that a better compatibility between the MWCNT and PEN is achieved when the coarser MWCNT is used.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3