Directional porous polyimide/polyethylene glycol composite aerogel with enhanced CO2 uptake performance

Author:

Nie Yihao1,Yi Xibin1ORCID,Zhao Xinfu1,Yu Shimo1,Zhang Jing1,Liu Xiaochan1,Liu Sijia1,Yuan Zhipeng1,Zhang Minna1

Affiliation:

1. Shandong Provincial Key Laboratory of Special Silicone-Containing Materials, Advanced Materials Institute, QiLu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China

Abstract

The cost of CO2 separation and energy consumption can be decreased through the use of CO2 adsorption. Due to the electron-rich heteroatoms in its network, polyimide (PI) has a remarkable affinity for CO2. Polyethylene glycol (PEG) can increase the layer spacing of polymers, so as to change the mass transfer of CO2 in it. Furthermore, the ether bond (-O-) in PEG has good affinity for CO2. In this study, PEG-1000 was introduced into PI aerogel by mild sol-gel method at low temperature, and freeze-drying was used to produce PI/PEG composite aerogels with directional pore structure. The effect of PEG-1000 content and directional pore structure of the PI/PEG composite aerogels on CO2 adsorption performance were further studied. The L-PI/PEG-4 composite aerogel, which contains 4  g PEG and is directionally frozen in liquid nitrogen, has a CO2 adsorption capacity of 16.76 cm3/g at 25°C and 1 bar. L-PI/PEG-4 aerogel also exhibits high CO2/N2 selectivity and adsorption cycle stability.

Funder

Science-Education-Industry Integration Innovation Pilot Project of Qilu University of Technology

Natural Science Foundation of Shandong Province

Postdoctoral Innovation Project of Shandong Province

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of tribological properties of polyimide-based composite materials;Industrial Lubrication and Tribology;2023-08-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3