Catalyst-Transfer Condensation Polymerization for the Synthesis of Well-Defined Polythiophene with Hydrophilic Side Chain and of Diblock Copolythiophene with Hydrophilic and Hydrophobic Side Chains

Author:

Yokozawa Tsutomu1,Adachi Isao1,Miyakoshi Ryo1,Yokoyama Akihiro1

Affiliation:

1. Department of Material and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan

Abstract

Chain-growth condensation polymerization of 2-bromo-5-chloromagnesio-3-[2-(2-metho-xyethoxy)ethoxy]methylthiophene (2) with Ni catalysts was studied, and the block copolymer of poly2 and poly(3-hexylthiophene) was synthesized by this polymerization method. The polymerization of 2 depended on the ligands of the Ni catalyst, and poly2 with the lowest polydispersity was obtained when 1,2-bis(diphenylphosphino)ethane (dppe) was used as the ligand. The linear relationships between the conversion of 2 and Mn of the polymer and between the feed ratio of 2 to the Ni catalyst and Mn of the polymer indicate that this polymerization proceeds in a chain-growth polymerization manner via a catalyst-transfer condensation polymerization mechanism. The block copolymerization of 2 and 2-bromo-5-chloromagnesio-3-hexylthiophene (1) was then carried out in four ways by changing the order of polymerization of the two monomers and the catalysts. It turned out that the block copolymer was obtained without the formation of the homopolymers by the polymerization of 1 with Ni(dppe)Cl2 or Ni(dppp)Cl2 (dppp = 1,2-bis(diphenylphosphino)propane), followed by the postpolymerization of 2. Of the two catalysts, Ni(dppe)Cl2 resulted in narrower polydispersity of the block copolymer.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3