Enhanced tribological properties of bismaleimides with a novel hybrid silicon dioxide containing amino groups

Author:

Jia Yuan1ORCID,Yang Juxiang1,Hu Xue1,Liu Zhen1

Affiliation:

1. Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, College of Chemical Engineering, Xi’an Key Laboratory on Intelligent Additive Manufacturing Technologies, Xi’an University, Xi’an, Shaanxi, People’s Republic of China

Abstract

To improve the tribological properties of bismaleimide (BMI) resin, silicon dioxide nanoparticles with imino and terminal functional amino groups were prepared through a sol–gel process to form a novel SiO2-NH2 hybrid. The as-prepared hybrid was then applied as a modifying agent for the BMI matrix to obtain SiO2-NH2/BMI composites. Compared to those of pure BMI resin, the volume wear rate and friction coefficient of the SiO2-NH2/BMI composites decreased significantly, while the wear mechanism changed from fatigue (BMI) to adhesive (SiO2-NH2/BMI) wear. This improvement in the tribological properties of the SiO2-NH2/BMI composites was attributed to the appropriate SiO2-NH2 added content, which endowed the BMI with excellent mechanical and thermal-resistant properties. Thus, the SiO2-NH2/BMI composites could resist the external load and excessive heat during the friction process.

Funder

the Science and Technology Project Foundation of Xi’an

national college students innovation and entrepreneurship training program

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3