Hexagonal boron nitride nanosheets: Fabrication, thermal properties and application in polymers

Author:

Zhang Wenchao1ORCID,Liang Yuan1,Yue Dong1,Feng Yu1

Affiliation:

1. School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, P. R. China

Abstract

Traditional thermally conductive materials are gradually losing their advantages as the electronics industry develops rapidly. Polymers are in urgent need of a material with high thermal conductivity, stable structure, good mechanical properties and oxidation resistance, which makes hexagonal boron nitride (h-BN) an excellent heat transfer filler for polymer composites. Boron nitride nanosheets (BNNS) are monolayers of hexagonal boron nitride, and theoretical studies have shown that BNNS have a higher thermal conductivity than h-BN (up to 400 Wm−1K−1, in-plane). This paper provides a comprehensive review of various methods for preparing BNNS, including mechanical exfoliation, liquid phase sonication exfoliation and chemical vapor deposition (CVD). In addition, various factors affecting the thermal conductivity of BNNS, including grain boundary, grain size and defects, are also discussed. Then, the influence of BNNS as filler on the thermal conductivity of the polymer was further discussed. Finally, this paper summarizes the existing BNNS applications and lists the application scenarios of BNNS in various fields. The purpose of this review is to summarize the previous work and put forward the prospect and future development direction of preparing high thermal conductivity BNNS-included polymer composites, so as to stimulate the research and improvement of new preparation methods for BNNS and promote its practical application as heat transfer materials.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3