Synthesis and characterization of a liquid oxygen-compatible epoxy resin

Author:

Wu Zhanjun1,Li Shichao1,Liu Minjing1,Wang Zhi1,Li Jialiang1

Affiliation:

1. Faculty of Vehicle Engineering and Mechanics, School of Aeronautics and Astronautics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, People’s Republic of China

Abstract

The bromine element was introduced into an epoxy resin to improve the liquid oxygen compatibility of the epoxy resin. After curing using 4,4′-diamino diphenylmethane, the liquid oxygen compatibility of all specimens was measured by the liquid oxygen mechanical impact test (ASTM D2512-95). The results suggested that the bromine-modified epoxy resin (BEP) was compatible with liquid oxygen, whereas the bisphenol F epoxy resin (EP) had poor liquid oxygen compatibility. The results of thermogravimetric analysis indicated that the incorporation of tetrabromobisphenol A into EP could accelerate the second-stage thermal degradation of BEP, leading to improvement of the liquid oxygen compatibility. X-ray photoelectron spectroscopy analysis indicated that the C–C/H groups on the surface of specimens could be oxidized to C–O–H/C and C=O groups during the impact process. The mechanism of bromine enhancement on the liquid oxygen compatibility of epoxy resin is proposed.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3