Synthesis and application of a halogen-free epoxy resin flame retardant curing agent

Author:

Liu Hengyang1ORCID,Liang Bing1,Long Jiapeng1ORCID

Affiliation:

1. School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang, China

Abstract

In this study, the intermediate of SPDPC flame retardant curing agent was successfully synthesized through the reaction between phosphorus oxychloride and pentaerythritol under the catalysis of 4-dimethylaminopyridine. Using 1,2-propylenediamine and the prepared SPDPC, a novel phosphorus and nitrogen flame retardant curing agent named poly1,2-propylenediamine pentaerythritol diphosphate (PDS) was successfully synthesized. The target product was subjected to characterization using infrared spectroscopy, mass spectrometry, hydrogen NMR spectroscopy and thermogravimetric analysis. The molecular structure of the product was determined and its decomposition temperature curve obtained, leading to the conclusion that it could be cured at high temperatures. DDS was selected as the curing agent for epoxy E-51, the specific curing conditions were obtained by DSC test. Subsequently, E-51, DDS and PDS were mixed for high temperature curing resulting in obtaining test spline of PDS-E-51 flame retardant composite material. Then, the flame retardancy and mechanical properties of the spline were tested. It was observed that pure EP cured by DDS had an LOI of only 19.5%, indicating its flammability. However, upon addition of PDS as a flame retardant, the LOI significantly increased with 20 parts resulting in an LOI of 29.7%. The addition of 25 parts results in an increase in limiting oxygen index to 30.3%, while the tensile strength and impact strength are measured at 38.27 MPa and 5.087 kJ/m2 respectively. The CCT test shows that the addition of PDS can significantly reduce the HHR and THR of the system. CCT digital photos show that the addition of PDS can make the combustion residue of the system expand obviously, showing a good expansion and flame retardant effect. TG-FTIR gas phase infrared absorption indicates that the addition of PDS can reduce the concentration of combustible gas in the combustion process. Test results indicate that the mechanical properties of PDS-E-51 flame retardant composites experience a certain degree of decline, but with increasing amounts of PDS curing agent added, their flame retardancy is significantly enhanced.

Funder

PhD Start-up Research Foundation of Department of Science and Technology of Liaoning Province

the Department of Education of Liaoning Province, Liaoning Distinguished Professor Fund

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3