Polyimide aerogels with low thermal conductivity and high-temperature stable properties prepared by lyophilization for flexible thermal protection

Author:

Xu Bing1ORCID,Zhang Zhipeng1,Liang Hongtan1,Hu Jie1,Chen Lixiang1,Wang Zhen1,Chai Bo1,Fan Guozhi1

Affiliation:

1. Hubei Provincial Engineering Technology Research Center of Agricultural and Sideline Resources Chemical Engineering and Utilization, School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China

Abstract

Polyimide aerogel, presenting an outstanding new material for lightweight protective thermal insulation, has garnered significant attention in the aerospace field. Despite its potential, due to the high production cost of the supercritical drying method used for its preparation, its widespread application is limited. In this research, a series of lightweight polyimide aerogels (F-PIAs, 3,3',4,4'-biphenyl tetracarboxylic dianhydride (s-BPDA) and 4,4'-diaminodiphenyl ether (ODA)) with excellent thermal protection properties were prepared by lyophilization. The findings indicated that F-PIAs (Freeze-dried polyimide aerogels) exhibited comparable physical characteristics to S-PIAs (Supercritical-dried polyimide aerogels), while their preparation cost was even more economical. F-PIAs exhibits excellent flexible and compression behavior (compression strength up to 1.16 MPa, modulus up to 12.8 MPa), which provide a great structural basis for the production of molded thermal insulation protective materials. The average pore diameter of F-PIAs is in the range of 7∼11 nm. The nanoporous structure leads to the gas within the pores of the aerogel producing the Knudsen effect, thereby significantly enhancing the thermal insulation performance of the aerogel. The thermal conductivity of F-PIA-4 (Freeze-dried polyimide aerogels with a solid content of 4%) at room temperature is as low as 0.023 W·m−1·K−1, which is superior to the PIAs (0.043 W·m−1·K−1) prepared by lyophilization in literature. Its thermal diffusion coefficient changes from 0.108 mm2·s−1 to 0.18 mm2·s−1 in the temperature range of 27°C to 200°C, demonstrating good thermal insulation performance at high temperatures. Meanwhile, after heating on a 150°C flat plate for 11 min and 41 s, the surface temperature of F-PIA-4 was only 36.2°C, further verifying its excellent thermal insulation performance. The results of the TGA experiment on F-PIA-4 demonstrated the high-temperature stability of aerogel (Td5% is higher than 523°C, Td10% is higher than 566°C). The exceptional properties of F-PIAs hold significant practical reference value in helping to reduce the manufacturing cost of high-performance aerogel thermal insulation materials, thereby enabling their widespread application in aerospace, military, and civil field.

Funder

Hubei Provincial Department of Education

Science and Technology Program of Hubei Province

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3