Poly(arylene ether nitrile)/lamellar MXene nanosheet composite films fabricated via bio-inspired dopamine surface chemistry

Author:

Dong Hongyu1ORCID,Yang Wei12,Sun Ao12,Zhan Yingqing123ORCID,Chen Yiwen1,Chen Ximin1

Affiliation:

1. College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, P R of China

2. Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, P R of China

3. Tianfu Yongxing Laboratory, Chengdu, P R of China

Abstract

2D lamellar MXene nanosheets have shown the promising candidate for preparing dielectric polymer composites due to their excellent electrical and mechanical properties. However, the high dielectric loss and low temperature resistance restrict their further application, which are still big challenges. In this work, MXene nanosheets were modified by dopamine mediated chemical crosslinking with polyethylenimine, which was further incorporated into the temperature-resistant poly (arylene ether nitrile) (PEN) matrix via a simple solution-casting method to prepare the dielectric MXene/PEN composite film. Specially, the insulating layer originated from polyethylenimine and polydopamine not only enhanced the interface polarization and the uniform dispersion of MXene in the polymer matrix, but also prevented the formation of conductive network. As a result, the MXene/PEN composite film achieved the high dielectric constant of 13.3 (1 kHz) when filling content was 7 wt%, and the dielectric loss was suppressed to 0.042. As the filling content reached 5 wt%, the MXene/PEN composite film had the maximum tensile strength and tensile modulus of 70.9 MPa and 3042.6 MPa, respectively, while maintaining a high elongation at break larger than 6.5%. In addition, the composite film retained the thermal decomposition temperature (T10%) of 460–521°C and the glass transition temperature higher than 149°C. Therefore, this work provides an alternative way to prepare thermally stable and dielectric polymer composite film with high mechanical strength and low dielectric loss, which is essential to the modern electronic applications.

Funder

The National Natural Science Foundation of China

Sichuan Province Sci-Tech Supported Project

International Science and Technology Cooperation Project from Chengdu Municipal Government

Sichuan Youth Science and Technology Innovation Research Team Project

Special project for the central government to guide the development of local science and technology in Sichuan Province

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3