Affiliation:
1. Beijing Composite Materials Co., Ltd, Beijing, China
2. Beijing Institute of Electronic System Engineering, Beijing, China
Abstract
This study reports the fabrication of quartz fabric reinforced phthalonitrile composite possessing good thermal and wave-transmitting properties. Phthalonitrile-terminated oligomer PN-SF curing behavior was investigated using differential scanning calorimetry (DSC) and dynamic rheological analysis (DRA), revealing a good processability pre-curing temperature of only 175°C. The thermoset exhibited the 5% loss temperature about 462°C, and after the temperature rising to 400°C and 400°C/2 h aging, the weight loss was only 10%, indicating that the resulting thermoset possessed outstanding thermal property. Moreover, the resulting thermosets possessed extremely high glass transition temperature (Tg) about 420°C. Besides, the quartz fabric/phthalonitrile composite possessed extremely excellent mechaical properties. Importantly, the transmission efficiencies can reach 87% at a certain frequency at the incident angle of 0°∼35°, indicating its well waving-transmitting performance. Meanwhile, the composite exhibited stable and relatively low dielectric constant and dielectric loss at the range of 12∼18 GHz. This study can serve as a basis for rapid evaluation of the high heat resistance and waving-transmitting phthalonitrile resin-based composite in various application environments.