Thermal conductivity, thermal diffusivity, and volumetric heat capacity of silicone elastomer nanocomposites

Author:

Sahu Govind1,Gaba VK1,Panda S2,Acharya B2,Mahapatra SP3

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Raipur, Chhattisgarh, India

2. Department of Electronics and Telecommunication Engineering, National Institute of Technology Raipur, Chhattisgarh, India

3. Department of Chemistry, National Institute of Technology Raipur, Chhattisgarh, India

Abstract

Silicone elastomer (SiR) nanocomposites were prepared using multiwalled carbon nanotubes (MWCNT) and nano-graphite (NG). The morphology of the SiR nanocomposites has been studied using scanning electron microscopy and high-resolution transmission electron microscopy techniques. Detailed analysis of the morphology reveals a uniform distribution of the MWCNT and NG filler particles in the silicone matrix. On increasing the filler loading, a continuous network structure is formed and aggregation takes place. The effect of the MWCNT and NG loadings on the thermal properties of the silicone elastomer has been investigated. The thermal properties of the SiR nanocomposites were measured by a thermal properties analyzer based on the transient hot-wire method. Studies also suggest that incorporation of nanoparticles improves the thermal conductivity of SiR nanocomposites. The thermal conductivity of SiR nanocomposites increased from 0.200 W/(m K) to 0.440 W/(m K) and to 0.310 W/(m K) for 6 wt% MWCNT and NG loadings, respectively. Because of the positive temperature coefficient and the conductive nature of the nanoparticles, the thermal conductivity of the material increased on increasing the temperature. The thermal diffusivity and the volumetric heat capacity of the SiR nanocomposites were measured. The thermal diffusivity of the SiR nanocomposites increased from 0.1194 mm2/s to 0.3209 mm2/s and to 0.2050 mm2/s for 6 wt% MWCNT and NG loadings, respectively. This indicates that the temperature response becomes faster with MWCNT and NG loadings. The volumetric heat capacity of the silicone elastomer nanocomposites decreased from 1.80 MJ/(m3K) to 1.34 MJ/(m3K) and to 1.40 MJ/(m3K) for 6 wt% MWCNT and NG loadings, respectively. Thus, MWCNT particles are more effective in increasing the thermal conductivity and diffusivity of the SiR nanocomposites, when compared to NG fillers at any loading.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3