Temperature effects on the compression behavior and failure of 3-D MWK glass fabric-reinforced epoxy composites

Author:

Li Dian-sen12,Wang Zhuo1,Duan Hong-wei1,Jiang Lei1

Affiliation:

1. Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Chemistry, Beijing University of Aeronautics and Astronautics, Beijing, China

2. Beijing Advanced Innovation Center for Biomedical Engineering, Beijing University of Aeronautics and Astronautics, Beijing, China

Abstract

This article reports the temperature effects on the in-plane and out-of-plane compression behavior and failure of 3-D multiaxial warp-knitted glass fabric-reinforced epoxy composites. The damage and fracture morphology are observed from macroscopic and microscopic views, and the failure mechanism is demonstrated. The results show that the temperature has significant effect on in-plane and out-of-plane compression properties, the stress versus strain curves decline, and the properties decrease significantly with increasing the temperature. The temperature of 75°C is a key point, at which change in compression properties occurs, and at 150°C, the materials become plastic. Moreover, fiber architecture and loading modes are also important factors on compression properties of composites. The results also show that the damage and failure patterns vary with temperature, fiber architecture, and loading modes. Under in-plane compression, material A shows local 0° fiber layers delaminating and becomes softening and plasticity with increasing temperature. Material B shows delaminating between 0°, 90°, +45°, and −45° fiber layers along 45° angle and exhibits multiple delaminating at elevated temperatures. Under out-of-plane compression, material A shows multiple local shear fracture with 45° angle and experiences softening, roughness, and expansion at elevated temperatures. Material B exhibits shear brittle failure clearly, and delaminating dominates the main failure with increasing the temperature.

Funder

Beijing Municipal Natural Science Foundation

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3