Synthesis and properties of pyrazine-based oligomeric phthalonitrile resins

Author:

Liu Yao1ORCID,Ji Puguang2,Zhang Zhenjiang34,Yu Xiaoyan1,Naito Kimiyoshi5,Zhang Qingxin126

Affiliation:

1. School of Chemical Engineering and Technology, Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin, China

2. Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin, China

3. Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai, China

4. School of Chemistry and Materials Science, Ludong University, Yantai, China

5. National Institute for Materials Science, Tsukuba, Japan

6. Key Lab for Micro- and Nano-Scale Boron Nitride Materials, Hebei University of Technology, Tianjin, China

Abstract

The pyrazine-based oligomeric phthalonitrile (PN) monomer, 2,6-bis[3-(3,4-dicyanophenoxy)phenoxy]pyrazine (BCPP), was synthesized from the reaction of an excess amount of resorcinol with 2,6-dichloropyrazine in the presence of potassium carbonate, followed by end-capping with 4-nitrophthalonitrile in a two-step, one-pot reaction. 4-(Aminophenoxy)phthalonitrile was applied to promote the curing reaction. The curing behavior was investigated by differential scanning calorimetry and rheological behavior, showing a wide processing window of 94°C, a complex viscosity of less than 1.5 Pa·s and a lower reaction activation energy of 32.57 kJ mol−1. The structure of the BCPP monomer was confirmed by Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. The unit cell was determined to be tetragonal system by wide-angle X-ray diffraction. The monomer was cured to yield cross-linked polymers, which exhibited a high initial storage modulus, excellent glass transition temperature, outstanding thermal stability, and low water uptake.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3