Thermomechanical properties of silica–epoxy nanocomposite modified by hyperbranched polyester: A molecular dynamics simulation

Author:

Zhang Jianwen1,Wang Dongwei1ORCID,Wang Lujia12,Zuo Wanwan1,Ma Xiaohua1,Du Shuai1,Zhou Lijun3

Affiliation:

1. School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, China

2. State Key Laboratory of Internet of Things for Smart City, University of Macau, Macau, China

3. School of Electrical Engineering, Southwest Jiaotong University, Chengdu, China

Abstract

In this article, pure epoxy resin and silica–epoxy nanocomposite models were established to investigate the effects of hyperbranched polyester on microstructure and thermomechanical properties of epoxy resin through molecular dynamics simulation. Results revealed that the composite of silica can improve the thermomechanical properties of nanocomposites, including the glass transition temperature, thermal conductivity, and elastic modulus. Moreover, the thermomechanical properties were further enhanced through chemical modification on the silica surface, where the effectiveness was the best through grafting hyperbranched polyester on the silica surface. Compared with pure epoxy resin, the glass transition temperature of silica–epoxy composite modified by silica grafted with hyperbranched polyester increased by 38 K. The thermal conductivity increased with the increase of temperature and thermal conductivity at room temperature increased to 0.4171 W/(m·K)−1 with an increase ratio of 94.3%. Young’s modulus, volume modulus, and shear modulus all fluctuated as temperature rise with a down overall trend. They increased by 44.68%, 29.52%, and 36.65%, respectively, when compared with pure epoxy resin. At the same time, the thermomechanical properties were closely related to the microstructure such as fractional free volume (FFV), mean square displacement (MSD), and binding energy. Silica surface modification by grafting hyperbranched polyester reduced the FFV value and MSD value most and strengthened the combination of silica and epoxy resin matrix the best, resulting in the best thermomechanical properties.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3